Cross-lingual Learning of Semantic Textual Similarity with Multilingual Word Representations

نویسندگان

  • Johannes Bjerva
  • Robert Östling
چکیده

Assessing the semantic similarity between sentences in different languages is challenging. We approach this problem by leveraging multilingual distributional word representations, where similar words in different languages are close to each other. The availability of parallel data allows us to train such representations on a large amount of languages. This allows us to leverage semantic similarity data for languages for which no such data exists. We train and evaluate on five language pairs, including English, Spanish, and Arabic. We are able to train wellperforming systems for several language pairs, without any labelled data for that language pair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ECNU at SemEval-2017 Task 1: Leverage Kernel-based Traditional NLP features and Neural Networks to Build a Universal Model for Multilingual and Cross-lingual Semantic Textual Similarity

To model semantic similarity for multilingual and cross-lingual sentence pairs, we first translate foreign languages into English, and then build an efficient monolingual English system with multiple NLP features. Our system is further supported by deep learning models and our best run achieves the mean Pearson correlation 73.16% in primary track.

متن کامل

Meerkat Mafia: Multilingual and Cross-Level Semantic Textual Similarity Systems

We describe UMBC’s systems developed for the SemEval 2014 tasks on Multilingual Semantic Textual Similarity (Task 10) and Cross-Level Semantic Similarity (Task 3). Our best submission in the Multilingual task ranked second in both English and Spanish subtasks using an unsupervised approach. Our best systems for Cross-Level task ranked second in Paragraph-Sentence and first in both Sentence-Phra...

متن کامل

HCCL at SemEval-2017 Task 2: Combining Multilingual Word Embeddings and Transliteration Model for Semantic Similarity

In this paper, we introduce an approach to combining word embeddings and machine translation for multilingual semantic word similarity, the task2 of SemEval2017. Thanks to the unsupervised transliteration model, our cross-lingual word embeddings encounter decreased sums of OOVs. Our results are produced using only monolingual Wikipedia corpora and a limited amount of sentence-aligned data. Alth...

متن کامل

A resource-light method for cross-lingual semantic textual similarity

Recognizing semantically similar sentences or paragraphs across languages is beneficial for many tasks, ranging from cross-lingual information retrieval and plagiarism detection to machine translation. Recently proposed methods for predicting cross-lingual semantic similarity of short texts, however, make use of tools and resources (e.g., machine translation systems, syntactic parsers or named ...

متن کامل

Probabilistic Models of Cross-Lingual Semantic Similarity in Context Based on Latent Cross-Lingual Concepts Induced from Comparable Data

We propose the first probabilistic approach to modeling cross-lingual semantic similarity (CLSS) in context which requires only comparable data. The approach relies on an idea of projecting words and sets of words into a shared latent semantic space spanned by language-pair independent latent semantic concepts (e.g., crosslingual topics obtained by a multilingual topic model). These latent cros...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017